Statistical Process Control for Multistage Processes with Non-repeating Cyclic Profiles
نویسندگان
چکیده
In many manufacturing processes, process data are observed in the form of time-based profiles, which may contain rich information for process monitoring and fault diagnosis. Most approaches currently available in profile monitoring focus on single-stage processes or multistage processes with repeating cyclic profiles. However, a number of manufacturing operations are performed in multiple stages, where non-repeating profiles are generated. For example, in a broaching process, non-repeating cyclic force profiles are generated by the interaction between each cutting tooth and the workpiece. This paper presents a process monitoring method based on Partial Least Squares (PLS) regression models, where PLS regression models are used to characterize the correlation between consecutive stages. Instead of monitoring the non-repeating profiles directly, the residual profiles from the PLS models are monitored. A Group Exponentially Weighted Moving Average (GEWMA) control chart is adopted to detect both global and local shifts. The performance of the proposed method is compared with conventional methods in a simulation study. Finally, a case study of a hexagonal broaching process is used to illustrate the effectiveness of the proposed methodology in process monitoring and fault diagnosis.
منابع مشابه
Phase-I monitoring of standard deviations in multistage linear profiles
In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on prof...
متن کاملMonitoring and Diagnosing Multistage Processes: A Review of Cause Selecting Control Charts
A review of the literature on cause selecting charts (CSCs) in multistage processes is given, with a concentration on developments which have occurred since 1993. Model based control charts and multiple cause selecting charts (MCSCs) are reviewed. Several articles based on normally and non-normally distributed outgoing quality characteristics are analyzed and important issues such as economic d...
متن کاملA Generalized Linear Statistical Model Approach to Monitor Profiles
Statistical process control methods for monitoring processes with univariate ormultivariate measurements are used widely when the quality variables fit to known probabilitydistributions. Some processes, however, are better characterized by a profile or a function of qualityvariables. For each profile, it is assumed that a collection of data on the response variable along withthe values of the c...
متن کاملA survey on multistage/multiphase statistical modeling methods for batch processes
In industrial manufacturing, most batch processes are inherently multistage/multiphase in nature. To ensure both quality consistency of the manufactured products and safe operation of this kind of batch process, different multivariate statistical process control (MSPC) methods have been proposed in recent years. This paper gives an overview of multistage/multiphase statistical process control m...
متن کاملFunctional process capability indices for nonlinear profile
A profile is a relationship between a response variable and one or more independent variables being controlled during the time. Process Capability Indices (PCI) are measured to evaluate the performance of processes in producing conforming products. Despite frequent applications of profile and a variety of available methods to monitor its different types, little researches have been carried out ...
متن کامل